Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.110
Filtrar
1.
Chem Biol Drug Des ; 103(3): e14493, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38439529

RESUMO

Anlotinib is used for the treatment of advanced non-small cell lung cancer; however, the emergence of drug resistance limits its clinical application. ß-sitosterol may also be used to treat lung cancer, but there have been no studies evaluating ß-sitosterol against anlotinib-resistant lung cancer. The purpose of this study was to determine the mechanism by which ß-sitosterol enhances the sensitivity of lung cancer cells to anlotinib. A549 cells were treated with different concentrations of anlotinib to generate anlotinib-resistant cells (A549/anlotinib cells). miR-181a-3p mimics were transfected into A549/anlotinib cells. A549 and A549/anlotinib cells were treated with ß-sitosterol at various concentrations. The Cell Counting Kit-8 (CCK-8) assay was used to measure cell proliferation. Apoptosis was assessed by flow cytometry. Real-time quantitative PCR was used to measure the expression of miR-181a-3p. The interaction of miR-181a-3p with the H/ACA ribonucleoprotein assembly factor (SHQ1) was predicted using the miRDB and TargetScan Human databases and verified with a luciferase reporter assay. The expression of SHQ1, activating transcription factor 6 (ATF6), and glucose-regulated protein 78 (GRP78) were measured by western blot analysis. ß-Sitosterol effectively suppressed A549/anlotinib cell proliferation and promoted apoptosis. SHQ1 is a downstream target of miR-181a-3p. The expression of miR-181a-3p was inhibited; however, SHQ1 expression was increased by ß-sitosterol treatment of A549/anlotinib cells. The inhibition of SHQ1, ATF6, and GRP78 protein expression by ß-sitosterol in A549/anlotinib cells was rescued by increased miR-181a-3p. ß-Sitosterol markedly promotes anlotinib-resistant A549 cell apoptosis and inhibits cell proliferation by activating SHQ1/UPR signaling through miR-181a-3p inhibition.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , MicroRNAs , Quinolinas , Sitosteroides , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Chaperona BiP do Retículo Endoplasmático , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MicroRNAs/efeitos dos fármacos , MicroRNAs/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos
2.
Nature ; 627(8005): 880-889, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480884

RESUMO

The evolutionary processes that underlie the marked sensitivity of small cell lung cancer (SCLC) to chemotherapy and rapid relapse are unknown1-3. Here we determined tumour phylogenies at diagnosis and throughout chemotherapy and immunotherapy by multiregion sequencing of 160 tumours from 65 patients. Treatment-naive SCLC exhibited clonal homogeneity at distinct tumour sites, whereas first-line platinum-based chemotherapy led to a burst in genomic intratumour heterogeneity and spatial clonal diversity. We observed branched evolution and a shift to ancestral clones underlying tumour relapse. Effective radio- or immunotherapy induced a re-expansion of founder clones with acquired genomic damage from first-line chemotherapy. Whereas TP53 and RB1 alterations were exclusively part of the common ancestor, MYC family amplifications were frequently not constituents of the founder clone. At relapse, emerging subclonal mutations affected key genes associated with SCLC biology, and tumours harbouring clonal CREBBP/EP300 alterations underwent genome duplications. Gene-damaging TP53 alterations and co-alterations of TP53 missense mutations with TP73, CREBBP/EP300 or FMN2 were significantly associated with shorter disease relapse following chemotherapy. In summary, we uncover key processes of the genomic evolution of SCLC under therapy, identify the common ancestor as the source of clonal diversity at relapse and show central genomic patterns associated with sensitivity and resistance to chemotherapy.


Assuntos
Evolução Molecular , Imunoterapia , Neoplasias Pulmonares , Platina , Carcinoma de Pequenas Células do Pulmão , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Células Clonais/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Genes myc/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Mutação , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Platina/farmacologia , Platina/uso terapêutico , Recidiva , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/imunologia , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/terapia
3.
Science ; 383(6682): eadi5798, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301010

RESUMO

Increasing use of covalent and noncovalent inhibitors of Bruton's tyrosine kinase (BTK) has elucidated a series of acquired drug-resistant BTK mutations in patients with B cell malignancies. Here we identify inhibitor resistance mutations in BTK with distinct enzymatic activities, including some that impair BTK enzymatic activity while imparting novel protein-protein interactions that sustain B cell receptor (BCR) signaling. Furthermore, we describe a clinical-stage BTK and IKZF1/3 degrader, NX-2127, that can bind and proteasomally degrade each mutant BTK proteoform, resulting in potent blockade of BCR signaling. Treatment of chronic lymphocytic leukemia with NX-2127 achieves >80% degradation of BTK in patients and demonstrates proof-of-concept therapeutic benefit. These data reveal an oncogenic scaffold function of mutant BTK that confers resistance across clinically approved BTK inhibitors but is overcome by BTK degradation in patients.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Resistencia a Medicamentos Antineoplásicos , Fator de Transcrição Ikaros , Leucemia Linfocítica Crônica de Células B , Inibidores de Proteínas Quinases , Proteólise , Humanos , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/metabolismo , Fator de Transcrição Ikaros/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Mutação , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais , Proteólise/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos
5.
J Cell Mol Med ; 27(24): 4133-4144, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37864310

RESUMO

Cisplatin (CDDP) chemoresistance is one of the predominant factors in oral squamous cell carcinoma (OSCC) treatment failure. Uncovering the mechanisms underlying CDDP resistance is of great importance in OSCC therapy. Circular RNAs (circRNAs) are a newly discovered class of noncoding RNAs, which are reported to participate in the progression of various diseases, including cancer. However, the function of circRNAs in CDDP resistance in OSCC remains unclear. Quantitative reverse transcription PCR was used to search for different circRNAs between OSCC cell lines and CDDP-resistant cell lines. The results showed that circ-ILF2 expression was higher in CDDP-resistant OSCC cell lines. The stability of circ-ILF2 was also confirmed using RNase R and actinomycin D assays. Functional experiments, including cytotoxicity, apoptosis and growth rate assays, showed that upregulation of circ-ILF2 contributes to CDDP resistance. Luciferase reporter-gene, RNA pull-down and quantitative real-time PCR (RT-qPCR) assays showed that circ-ILF2 functions as a microRNA sponge for miR-1252. Luciferase reporter assays, RNA pull-down, RT-qPCR and Western blotting showed that miR-1252 directly targeted and regulated the expression of KLF8. Circ-ILF2 plays an important role in CDDP resistance in OSCC. Circ-ILF2 exerts its function through the miR-1252/KLF8 pathway. In addition, tumour-associated macrophages (TAM) play important roles in cancer progressions, our results showed that circ-ILF2 in OSCC cells induced the M2 polarization of macrophages which provided new thoughts on immunotherapy. Our results suggest that circ-ILF2 may represent a potential therapeutic target in CDDP-resistant OSCC.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , RNA Circular , Carcinoma de Células Escamosas de Cabeça e Pescoço , RNA Circular/genética , RNA Circular/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Macrófagos/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/fisiopatologia , Polaridade Celular/genética , Humanos
6.
Nature ; 620(7973): 409-416, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532934

RESUMO

Netrin-1 is upregulated in cancers as a protumoural mechanism1. Here we describe netrin-1 upregulation in a majority of human endometrial carcinomas (ECs) and demonstrate that netrin-1 blockade, using an anti-netrin-1 antibody (NP137), is effective in reduction of tumour progression in an EC mouse model. We next examined the efficacy of NP137, as a first-in-class single agent, in a Phase I trial comprising 14 patients with advanced EC. As best response we observed 8 stable disease (8 out of 14, 57.1%) and 1 objective response as RECIST v.1.1 (partial response, 1 out of 14 (7.1%), 51.16% reduction in target lesions at 6 weeks and up to 54.65% reduction during the following 6 months). To evaluate the NP137 mechanism of action, mouse tumour gene profiling was performed, and we observed, in addition to cell death induction, that NP137 inhibited epithelial-to-mesenchymal transition (EMT). By performing bulk RNA sequencing (RNA-seq), spatial transcriptomics and single-cell RNA-seq on paired pre- and on-treatment biopsies from patients with EC from the NP137 trial, we noted a net reduction in tumour EMT. This was associated with changes in immune infiltrate and increased interactions between cancer cells and the tumour microenvironment. Given the importance of EMT in resistance to current standards of care2, we show in the EC mouse model that a combination of NP137 with carboplatin-paclitaxel outperformed carboplatin-paclitaxel alone. Our results identify netrin-1 blockade as a clinical strategy triggering both tumour debulking and EMT inhibition, thus potentially alleviating resistance to standard treatments.


Assuntos
Neoplasias do Endométrio , Transição Epitelial-Mesenquimal , Netrina-1 , Animais , Feminino , Humanos , Camundongos , Biópsia , Carboplatina/administração & dosagem , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/imunologia , Neoplasias do Endométrio/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Perfilação da Expressão Gênica , Netrina-1/antagonistas & inibidores , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , RNA-Seq , Análise da Expressão Gênica de Célula Única , Microambiente Tumoral/efeitos dos fármacos
7.
Int J Mol Sci ; 24(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37446202

RESUMO

This study uses personalized chronic lymphoblastic leukemia (CLL) cybrid cells to test various drugs/agents designed to improve mitochondrial function and cell longevity. Age-matched control (NL) and CLL cybrids were created. The NL and CLL cybrids were treated with ibrutinib (Ibr-10 µM), mitochondrial-targeted nutraceuticals such as alpha lipoic acid (ALA-1 mM), amla (Aml-300 µg), melatonin (Mel-1 mM), resveratrol (Res-100 µM) alone, or a combination of ibrutinib with nutraceuticals (Ibr + ALA, Ibr + Aml, Ibr + Mel, or Ibr + Res) for 48 h. MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide), H2DCFDA(2',7' Dichlorodihydrofluorescein diacetate), and JC1 assays were used to measure the cellular metabolism, intracellular ROS levels, and mitochondrial membrane potential (∆ψm), respectively. The expression levels of genes associated with antioxidant enzymes (SOD2, GPX3, and NOX4), apoptosis (BAX and CASP3), and inflammation (IL6, IL-1ß, TNFα, and TGFß) were measured using quantitative real-time PCR (qRT-PCR). CLL cybrids treated with Ibr + ALA, Ibr + Aml, Ibr + Mel, and Ibr + Res had (a) reduced cell survivability, (b) increased ROS production, (c) increased ∆ψm levels, (d) decreased antioxidant gene expression levels, and (e) increased apoptotic and inflammatory genes in CLL cybrids when compared with ibrutinib-alone-treated CLL cybrids. Our findings show that the addition of nutraceuticals makes the CLL cybrids more pro-apoptotic with decreased cell survival compared with CLL cybrids exposed to ibrutinib alone.


Assuntos
Leucemia Linfocítica Crônica de Células B , Leucemia Mieloide Aguda , Mitocôndrias , Humanos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células Híbridas , Suplementos Nutricionais , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos
8.
Pharmacol Ther ; 249: 108485, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37406740

RESUMO

Autophagy is a conserved process in which the cytosolic materials are degraded and eventually recycled for cellular metabolism to maintain homeostasis. The dichotomous role of autophagy in pathogenesis is complicated. Accumulating reports have suggested that cytoprotective autophagy is responsible for tumor growth and progression. Autophagy inhibitors, such as chloroquine (CQ) and hydroxychloroquine (HCQ), are promising for treating malignancies or overcoming drug resistance in chemotherapy. With the rapid development of nanotechnology, nanomaterials also show autophagy-inhibitory effects or are reported as the carriers delivering autophagy inhibitors. In this review, we summarize the small-molecule compounds and nanomaterials inhibiting autophagic flux as well as the mechanisms involved. The nanocarrier-based drug delivery systems for autophagy inhibitors and their distinct advantages are also described. The progress of autophagy inhibitors for clinical applications is finally introduced, and their future perspectives are discussed.


Assuntos
Autofagia , Nanoestruturas , Neoplasias , Bibliotecas de Moléculas Pequenas , Autofagia/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nanoestruturas/uso terapêutico , Sistemas de Liberação de Fármacos por Nanopartículas , Ensaios Clínicos como Assunto , Humanos
9.
Nature ; 620(7974): 651-659, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468627

RESUMO

Even among genetically identical cancer cells, resistance to therapy frequently emerges from a small subset of those cells1-7. Molecular differences in rare individual cells in the initial population enable certain cells to become resistant to therapy7-9; however, comparatively little is known about the variability in the resistance outcomes. Here we develop and apply FateMap, a framework that combines DNA barcoding with single-cell RNA sequencing, to reveal the fates of hundreds of thousands of clones exposed to anti-cancer therapies. We show that resistant clones emerging from single-cell-derived cancer cells adopt molecularly, morphologically and functionally distinct resistant types. These resistant types are largely predetermined by molecular differences between cells before drug addition and not by extrinsic factors. Changes in the dose and type of drug can switch the resistant type of an initial cell, resulting in the generation and elimination of certain resistant types. Samples from patients show evidence for the existence of these resistant types in a clinical context. We observed diversity in resistant types across several single-cell-derived cancer cell lines and cell types treated with a variety of drugs. The diversity of resistant types as a result of the variability in intrinsic cell states may be a generic feature of responses to external cues.


Assuntos
Antineoplásicos , Células Clonais , Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Células Clonais/patologia , Código de Barras de DNA Taxonômico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , RNA-Seq , Análise da Expressão Gênica de Célula Única , Células Tumorais Cultivadas , Antineoplásicos/farmacologia
10.
Clin Cancer Res ; 29(16): 2951-2953, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37314773

RESUMO

RET fusions occur as a rare mechanism of acquired resistance to osimertinib in patients with EGFR mutation-positive non-small cell lung cancer. Inhibiting RET alongside osimertinib shows promising clinical activity, but innovative approaches are needed to seek regulatory approvals in these rare treatment resistance settings. See related article by Rotow et al., p. 2979.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Mutação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-ret
11.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119510, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301270

RESUMO

Aberrant expression of multidrug resistance (MDR) proteins is one of the features of cancer stem cells (CSCs) that make them escape chemotherapy. A well-orchestrated regulation of multiple MDRs by different transcription factors in cancer cells confers this drug resistance. An in silico analysis of the major MDR genes revealed a possible regulation by RFX1 and Nrf2. Previous reports also noted that Nrf2 is a positive regulator of MDR genes in NT2 cells. But we, for the first time, report that Regulatory factor X1 (RFX1), a pleiotropic transcription factor, negatively regulates the major MDR genes, Abcg2, Abcb1, Abcc1, and Abcc2, in NT2 cells. The levels of RFX1 in undifferentiated NT2 cells were found to be very low, which significantly increased upon RA-induced differentiation. Ectopic expression of RFX1 reduced the levels of transcripts corresponding to MDRs and stemness-associated genes. Interestingly, Bexarotene, an RXR agonist that acts as an inhibitor of Nrf2-ARE signaling, could increase the transcription of RFX1. Further analysis revealed that the RFX1 promoter has binding sites for RXRα, and upon Bexarotene exposure RXRα could bind and activate the RFX1 promoter. Bexarotene, alone or in combination with Cisplatin, could inhibit many cancer/CSC-associated properties in NT2 cells. Also, it significantly reduced the expression of drug resistance proteins and made the cells sensitive towards Cisplatin. Our study proves that RFX1 could be a potent molecule to target MDRs, and Bexarotene can induce RXRα-mediated RFX1 expression, therefore, would be a better chemo-assisting drug during therapy.


Assuntos
Carcinoma , Resistencia a Medicamentos Antineoplásicos , Fator Regulador X1 , Humanos , Bexaroteno/farmacologia , Cisplatino/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fatores de Transcrição de Fator Regulador X , Fator Regulador X1/efeitos dos fármacos , Fator Regulador X1/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos
12.
J Biol Chem ; 299(6): 104800, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37164156

RESUMO

For cells, it is important to repair DNA damage, such as double-strand and single-strand DNA breaks, because unrepaired DNA can compromise genetic integrity, potentially leading to cell death or cancer. Cells have multiple DNA damage repair pathways that have been the subject of detailed genetic, biochemical, and structural studies. Recently, the scientific community has started to gain evidence that the repair of DNA double-strand breaks may occur within biomolecular condensates and that condensates may also contribute to DNA damage through concentrating genotoxic agents used to treat various cancers. Here, we summarize key features of biomolecular condensates and note where they have been implicated in the repair of DNA double-strand breaks. We also describe evidence suggesting that condensates may be involved in the repair of other types of DNA damage, including single-strand DNA breaks, nucleotide modifications (e.g., mismatch and oxidized bases), and bulky lesions, among others. Finally, we discuss old and new mysteries that could now be addressed considering the properties of condensates, including chemoresistance mechanisms.


Assuntos
Reparo do DNA , DNA , Resistencia a Medicamentos Antineoplásicos , DNA/química , DNA/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Pareamento Incorreto de Bases/efeitos dos fármacos
13.
Nature ; 617(7960): 377-385, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37138075

RESUMO

The gut microbiota is a crucial regulator of anti-tumour immunity during immune checkpoint inhibitor therapy. Several bacteria that promote an anti-tumour response to immune checkpoint inhibitors have been identified in mice1-6. Moreover, transplantation of faecal specimens from responders can improve the efficacy of anti-PD-1 therapy in patients with melanoma7,8. However, the increased efficacy from faecal transplants is variable and how gut bacteria promote anti-tumour immunity remains unclear. Here we show that the gut microbiome downregulates PD-L2 expression and its binding partner repulsive guidance molecule b (RGMb) to promote anti-tumour immunity and identify bacterial species that mediate this effect. PD-L1 and PD-L2 share PD-1 as a binding partner, but PD-L2 can also bind RGMb. We demonstrate that blockade of PD-L2-RGMb interactions can overcome microbiome-dependent resistance to PD-1 pathway inhibitors. Antibody-mediated blockade of the PD-L2-RGMb pathway or conditional deletion of RGMb in T cells combined with an anti-PD-1 or anti-PD-L1 antibody promotes anti-tumour responses in multiple mouse tumour models that do not respond to anti-PD-1 or anti-PD-L1 alone (germ-free mice, antibiotic-treated mice and even mice colonized with stool samples from a patient who did not respond to treatment). These studies identify downregulation of the PD-L2-RGMb pathway as a specific mechanism by which the gut microbiota can promote responses to PD-1 checkpoint blockade. The results also define a potentially effective immunological strategy for treating patients who do not respond to PD-1 cancer immunotherapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Imunoterapia , Melanoma , Microbiota , Animais , Humanos , Camundongos , Moléculas de Adesão Celular Neuronais , Modelos Animais de Doenças , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transplante de Microbiota Fecal , Vida Livre de Germes , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/imunologia , Melanoma/microbiologia , Melanoma/terapia , Ligação Proteica/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
14.
Small ; 19(25): e2300736, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37029565

RESUMO

Cell cycle checkpoint activation promotes DNA damage repair, which is highly associated with the chemoresistance of various cancers including acute myeloid leukemia (AML). Selective cell cycle checkpoint inhibitors are strongly demanded to overcome chemoresistance, but remain unexplored. A selective nano cell cycle checkpoint inhibitor (NCCI: citric acid capped ultra-small iron oxide nanoparticles) that can catalytically inhibit the cell cycle checkpoint of AML to boost the chemotherapeutic efficacy of genotoxic agents is now reported. NCCI can selectively accumulate in AML cells and convert H2 O2 to • OH to cleave heat shock protein 90, leading to the degradation of ataxia telangiectasia and Rad3-related proteinand checkpoint kinase 1, and the subsequent dysfunction of the G2/M checkpoint. Consequently, NCCI revitalizes the anti-AML efficacy of cytarabine that is previously ineffective both in vitro and in vivo. This study offers new insights into designing selective cell cycle checkpoint inhibitors for biomedical applications.


Assuntos
Antineoplásicos , Pontos de Checagem do Ciclo Celular , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Nanopartículas Magnéticas de Óxido de Ferro , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ácido Cítrico/química , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Nanopartículas Magnéticas de Óxido de Ferro/química , Linhagem Celular Tumoral
15.
Bioorg Med Chem ; 84: 117263, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37011445

RESUMO

To search for potent CDK4/6 covalent inhibitors, total 14 compounds have been designed and synthesized by connecting different Michael-acceptor to the piperazine moiety of palbociclib. All the compounds displayed good antiproliferative activity against human hepatoma cell (HepG2), non-small cell lung cancer (A549), and breast cancer (MDA-MB-231 and MCF-7) cell lines. In particular, compound A4 showed the highest inhibitory activity to MDA-MB-231 and MCF-7 cells with IC50 values of 0.51 µM and 0.48 µM, respectively. More importantly, A4 also showed strong inhibition against MDA-MB-231/palbociclib cells, indicating that A4 could effectively avoid the resistance of palbociclib. In the enzyme test, A4 showed selective inhibitory activity against CDK4/6, with the IC50 value of 18 nM and 13 nM, respectively. It was also found that A4 could efficiently induce apoptosis and arrest the cell cycle at G0/G1 phase. Moreover, A4 could significantly decrease the phosphorylation level of CDK4 and CDK6. HPLC and molecular modeling studies suggested that A4 could form a covalent bond with the target protein.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose , Carcinoma Pulmonar de Células não Pequenas , Linhagem Celular Tumoral , Proliferação de Células , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/química , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pulmonares/tratamento farmacológico , Piperazinas/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/química , Neoplasias da Mama/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico
16.
Sci Rep ; 13(1): 6546, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085698

RESUMO

With the widespread use of Integrase strand transfer inhibitors (INSTIs), surveillance of HIV-1 pretreatment drug resistance is critical in optimizing antiretroviral treatment efficacy. However, despite the introduction of these drugs, data concerning their resistance mutations (RMs) is still limited in Ethiopia. Thus, this study aimed to assess INSTI RMs and polymorphisms at the gene locus coding for Integrase (IN) among viral isolates from ART-naive HIV-1 infected Ethiopian population. This was a cross-sectional study involving isolation of HIV-1 from plasma of 49 newly diagnosed drug-naive HIV-1 infected individuals in Addis-Ababa during the period between June to December 2018. The IN region covering the first 263 codons of blood samples was amplified and sequenced using an in-house assay. INSTIs RMs were examined using calibrated population resistance tool version 8.0 from Stanford HIV drug resistance database while both REGA version 3 online HIV-1 subtyping tool and the jumping profile Hidden Markov Model from GOBICS were used to examine HIV-1 genetic diversity. Among the 49 study participants, 1 (1/49; 2%) harbored a major INSTIs RM (R263K). In addition, blood specimens from 14 (14/49; 28.5%) patients had accessory mutations. Among these, the M50I accessory mutation was observed in a highest frequency (13/49; 28.3%) followed by L74I (1/49; 2%), S119R (1/49; 2%), and S230N (1/49; 2%). Concerning HIV-1 subtype distribution, all the entire study subjects were detected to harbor HIV-1C strain as per the IN gene analysis. This study showed that the level of primary HIV-1 drug resistance to INSTIs is still low in Ethiopia reflecting the cumulative natural occurrence of these mutations in the absence of selective drug pressure and supports the use of INSTIs in the country. However, continues monitoring of drug resistance should be enhanced since the virus potentially develop resistance to this drug classes as time goes by.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Farmacorresistência Viral , Infecções por HIV , Inibidores de Integrase de HIV , Integrase de HIV , HIV-1 , Humanos , Estudos Transversais , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Genótipo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/virologia , Integrase de HIV/efeitos dos fármacos , Integrase de HIV/genética , Integrase de HIV/isolamento & purificação , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/uso terapêutico , Soropositividade para HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , HIV-1/genética , HIV-1/isolamento & purificação , Mutação , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética
17.
BMJ Open ; 13(4): e070051, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37068890

RESUMO

INTRODUCTION: Relapsed and refractory B-cell acute lymphoblastic leukaemia (R/R-B-ALL) is linked to a significant relapse rate after allogeneic haematopoietic cell transplantation (allo-HCT) in children, adolescents and young adults (CAYA). No standard treatment has been established to prevent relapse after allo-HCT for R/R-B-ALL, which is an unmet medical need. The administration of blinatumomab after allo-HCT is expected to enhance the antileukaemic effect on residual CD19-positive blasts by donor-derived CD3-positive T-cells. METHODS AND ANALYSIS: The goal of this multicentre, open-label, uncontrolled, phase I-II clinical trial is to assess the safety and effectiveness of post-transplant maintenance therapy with blinatumomab for CAYA patients (25 years old or younger) with CD19-positive R/R-B-ALL who have received allo-HCT beyond first complete remission (CR) and have CR with haematological recovery between 30 and 100 days after allo-HCT. Eighty-five paediatric institutions in Japan are participating in this study. Forty-one patients will enrol within 2.25-year enrolment period and follow-up period is 1 year. The primary endpoints are the treatment completion rate for phase I study and the 1-year graft-versus-host disease-free/relapse-free survival rate for phase II study, respectively. ETHICS AND DISSEMINATION: This research was approved by the Central Review Board at National Hospital Organization Nagoya Medical Center (Nagoya, Japan) on 21 January 2022 and was registered at the Japan Registry of Clinical Trials (jRCT) on 3 March 2022. Written informed consent is obtained from all patients and/or their guardians. The results of this study will be disseminated through peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER: jRCTs041210154.


Assuntos
Anticorpos Biespecíficos , Antígenos CD19 , Ensaios Clínicos como Assunto , Transplante de Células-Tronco Hematopoéticas , Quimioterapia de Manutenção , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Recidiva , Adolescente , Criança , Humanos , Adulto Jovem , Anticorpos Biespecíficos/efeitos adversos , Anticorpos Biespecíficos/uso terapêutico , Antígenos CD19/metabolismo , Biomarcadores Tumorais , Complexo CD3/metabolismo , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Doença Enxerto-Hospedeiro/prevenção & controle , Japão , Quimioterapia de Manutenção/efeitos adversos , Microbiota , Estudos Multicêntricos como Assunto , Neoplasia Residual/prevenção & controle , Seleção de Pacientes , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/prevenção & controle , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Fatores de Tempo , Resultado do Tratamento , Tamanho da Amostra
18.
Nature ; 616(7955): 168-175, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36949199

RESUMO

The resistance of cancer cells to therapy is responsible for the death of most patients with cancer1. Epithelial-to-mesenchymal transition (EMT) has been associated with resistance to therapy in different cancer cells2,3. However, the mechanisms by which EMT mediates resistance to therapy remain poorly understood. Here, using a mouse model of skin squamous cell carcinoma undergoing spontaneous EMT during tumorigenesis, we found that EMT tumour cells are highly resistant to a wide range of anti-cancer therapies both in vivo and in vitro. Using gain and loss of function studies in vitro and in vivo, we found that RHOJ-a small GTPase that is preferentially expressed in EMT cancer cells-controls resistance to therapy. Using genome-wide transcriptomic and proteomic profiling, we found that RHOJ regulates EMT-associated resistance to chemotherapy by enhancing the response to replicative stress and activating the DNA-damage response, enabling tumour cells to rapidly repair DNA lesions induced by chemotherapy. RHOJ interacts with proteins that regulate nuclear actin, and inhibition of actin polymerization sensitizes EMT tumour cells to chemotherapy-induced cell death in a RHOJ-dependent manner. Together, our study uncovers the role and the mechanisms through which RHOJ acts as a key regulator of EMT-associated resistance to chemotherapy.


Assuntos
Carcinoma de Células Escamosas , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Neoplasias Cutâneas , Proteínas rho de Ligação ao GTP , Actinas/efeitos dos fármacos , Actinas/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteômica , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Camundongos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Perfilação da Expressão Gênica , Genoma
19.
Br J Cancer ; 128(10): 1850-1861, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36918717

RESUMO

BACKGROUND: No targeted drugs are currently available against small cell lung cancer (SCLC). BCL-2 family members are involved in apoptosis regulation and represent therapeutic targets in many malignancies. METHODS: Expression of BCL-2 family members in 27 SCLC cell lines representing all known four SCLC molecular subtypes was assessed by qPCR, Western blot and mass spectrometry-based proteomics. BCL-2 and MCL-1 inhibition (venetoclax and S63845, respectively) was assessed by MTT assay and flow cytometry and in mice bearing human SCLC tumours. Drug interactions were calculated using the Combenefit software. Ectopic BAX overexpression was achieved by expression plasmids. RESULTS: The highest BCL-2 expression levels were detected in ASCL1- and POU2F3-driven SCLC cells. Although sensitivity to venetoclax was reflected by BCL-2 levels, not all cell lines responded consistently despite their high BCL-2 expression. MCL-1 overexpression and low BAX levels were both characteristic for venetoclax resistance in SCLC, whereas the expression of other BCL-2 family members did not affect therapeutic efficacy. Combination of venetoclax and S63845 resulted in significant, synergistic in vitro and in vivo anti-tumour activity and apoptosis induction in double-resistant cells; however, this was seen only in a subset with detectable BAX. In non-responding cells, ectopic BAX overexpression sensitised to venetoclax and S63845 and, furthermore, induced synergistic drug interaction. CONCLUSIONS: The current study reveals the subtype specificity of BCL-2 expression and sheds light on the mechanism of venetoclax resistance in SCLC. Additionally, we provide preclinical evidence that combined BCL-2 and MCL-1 targeting is an effective approach to overcome venetoclax resistance in high BCL-2-expressing SCLCs with intact BAX.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2 , Carcinoma de Pequenas Células do Pulmão , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética
20.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902166

RESUMO

Anti-neoplastic agents for cancer treatment utilize many different mechanisms of action and, when combined, can result in potent inhibition of cancer growth. Combination therapies can result in long-term, durable remission or even cure; however, too many times, these anti-neoplastic agents lose their efficacy due to the development of acquired drug resistance (ADR). In this review, we evaluate the scientific and medical literature that elucidate STAT3-mediated mechanisms of resistance to cancer therapeutics. Herein, we have found that at least 24 different anti-neoplastic agents-standard toxic chemotherapeutic agents, targeted kinase inhibitors, anti-hormonal agents, and monoclonal antibodies-that utilize the STAT3 signaling pathway as one mechanism of developing therapeutic resistance. Targeting STAT3, in combination with existing anti-neoplastic agents, may prove to be a successful therapeutic strategy to either prevent or even overcome ADR to standard and novel cancer therapies.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Neoplasias , Fator de Transcrição STAT3 , Humanos , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Transdução de Sinais , Fator de Transcrição STAT3/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...